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Unit 2: Kinematics




Unit 2 Overview

Text . .
Lesson Reference Topic Questions Done
1 11 Distance, Position Pg 11 P#1 - 3; Pg 13 P#1,;
' and Displacement Pg 13 Q#1 — 4,6
2 1.2 Speed & Velocity Pg 20 Q#4,6 - 8
. Pg 30 Q#4, 6 — 11;
1. Accelerat
3 3 ceeleration Activity: Hawk Diving
Lab 2.1 Acceleratlor} Due To Lab Write-up & Discussion
Gravity
. Pg 33 — Read Tutorial 1, P#1;
4 1.4 Com;.)arlng Grz?phs of Pg 35 Q#2 — 4 & Worksheet: Information in
Linear Motion . .
Kinematics Graphs
5 15 Generating & Worksheet: Rearranging & Selecting
' Deriving Equations Kinematics Equations
. Pg 39 Q#2 —4,6; Pg 43 Q#4 -7
0 15 & 1.6 Problem Solving Worksheet: Kinematics Problem Solving
Lab 2.2 Motion of a Jeep Lab Write-up & Discussion
7 91 Vectors Using Scale Worksheet: Vector Problems (Scale)
' Diagrams Pg 65 Q#7 -9
ksheet: tor Probl Algeb
8 2.2 Vectors & Algebra Workshee ;/gC?;rQ;j 76;)[18 (Algebra)
Pg 72 - d Tutorial 4; Pg 74 P#2;
9 2.2 Relative Velocity g1 Rean 71; (2;28, ’9 & 74 P#2;
10 2.3 Projectile Motion Workshe;‘;: ;r(g;;:‘;ﬂe groblems
Finding the Initial
Lab 2.3 Velocity of a Lab Write-up & Discussion

Projectile




Nelson Physics 11

Lesson 1 — Distance, Position & Displacement §1.1 Pg. 8- 13

v" All matter is in a constant state of motion.
v' Kinematics is the study of how objects move.
v' There are two types of motion: uniform and non-

uniform.

Uniform Motion:

Non-Uniform Motion:

Vector & Scalar Measurements

A scalar measurement has a

Examples:

A vector measurement has a

Examples:

Notation

Vectors are distinguished from
scalars by the addition of a special
“hat” over top of any quantities
symbol.

Sign Conventions

Physicists will indicate the direction of motion using positive and
negative signs. Unless stated otherwise, here is the normal
assumption in all problems:

Distance, Position and Displacement
Although similar, these three concepts are unique in our description of motion.

L
SCIENCE |

220 I

| e 1 T S
L -
7] 4™ ST
(=] Y
I_| <T
=l I CUSTODIAN
[ |

UPI]

DN

s BALCONY
ABOVE

UpP UP 1
ATTENDANCE [ PHONES vp

1
| s e 1 ke -

Distance

Position Displacement




Example 1

Using the floor plan diagram shown, consider each of the following

questions.

a) You walk from the science office to room 220. What is your
displacement?

CLASSROOM

b) What is your displacement if you walk from room 231 to the guidance
office?
¢) You walk from the science office, to the guidance office and then to SCIENCE
VanB’s room (232). What distance have you walked? What is your &3
displacement?
b SCIENCE
gl WORK ROOM
(=]
o
STORAGE
Example 2

A dog is practicing for an agility competition. He leaves his trainer and runs 80 m due west to pick up a ball
and then carries the ball 27 m due east and drops it into a bucket. What is the dog’s total displacement?




Nelson Physics 11

Lesson 2 — Speed and Velocity §12 Pg 1420

v' A position-time graph is a graphical description of motion.
v' The slope of a position-time graph is the velocity of the object.
v" Speed and velocity are similar but distinct characteristics in the study of motion.

Average Speed
For any object in motion, it’s average speed is its total distance travelled
divided by the total time elapsed.

Position — Time Graphs
A useful skill in the study of motion is the ability to extract information from the graph of an
object’s position versus time.

Position v. Time for a Toy Car

35 // Reading the graph:

30 /-

25 /
/

D 20 A

£ Finding the slope:
g 15 mdaimg tne siope:

10

O 2 4 6 8 10 12 14

Example 1
A Lego train moves 1.25 m [E] and then 0.75 m [W] along its track in 8 seconds.

Determine the average speed and the average velocity of the train.




Example 2

Consider the position-time graph shown. Determine the position

Position v. Time for a Motorcycle

of the motorcycle at 6 seconds and its average velocity during 350
the time segment shown. 300
250
ur 200 ~
=
'S 150
100 //
50 (/
0
o 1 2 3 4 5
t(s)
Different Types of Motion; Different Graphs
Position-time Graph Description of Motion Example
= v' graph is a horizontal straight line
c v' slope is zero; object has a velocity of zero; object is at rest
o v object is at a constant positive position (east) relative to a
reference position
t(s)
N v graphisa
o v’ slopeis __ ;object has velocity  ;objectis
1:% 10 v' object is at a constant __ position (_ ) relative to a
reference position
v' graph is a straight line with positive slope
o v'  straight lines with non-zero slopes always represent
£ constant (non-zero) velocity
o v' object is moving eastward, velocity can be found by
%) determining slope
. v graphisa
i) v object hasa velocity
T% v’ object is moving , velocity can be found by
determining slope
v" object does not begin at the ; >




. Nelson Physics 11
Lesson 3 — Acceleration §1.3 Pg. 21 - 30

Acceleration describes the change in velocity over time.

The position-time graph for an accelerating object is a curve.

v' The instantaneous velocity of an object is its velocity at that instant in time. It is equal
to the slope of a tangent line to the position-time graph at that instant in time.

v' The slope of a velocity-time graph is the acceleration of the object.

v' The area under a velocity-time graph is the displacement of the object.

AN

Curved Position — Time Graphs
When an object is accelerating its position-time graph will not be a straight line, it will be a

curve.
Position v. Time for a Train
350 .
Reading the graph:
300
250
% 200 /( Finding the slope:
e 150 ',
100
50 <
0 ]
O 1 2 3 4 5 6 7
t(s)
Example 1 Position v. Time for an
Consider the position-time graph shown. Determine the instantaneous Accelerating Object
velocity of the object at 2.0 s and it’s average velocity over the first 2.0 s 14.0
of motion. 12.0
10.0 //
@ 8.0 /
= /
£
1o 60
4.0
2.0
//

0
0 0510 1.5 20 25 30 35
t(s)




Different Types of Motion; Different Graphs

Position-time Graph Description of Motion Example
. v' graph is a curve
i) v' since the slope is changing, the velocity is not constant
£ v' The graph lies above the x-axis and its slope is increasing,
o the velocity of the object is increasing (speeding up) in a
positive (eastward) direction
t(s)
t(s)
~— v' graph is a curve
= v' since the slope is changing, the velocity is not constant
E v" The graph lies below the x-axis and its slope is
e , the velocity of the objectis
(. ina (. ) direction
— v' graph is a curve
& v' since the slope is changing, the velocity is not constant
£ v" The graph lies above the x-axis and its slope is
N , the velocity of the objectis
(. Yina (. ) direction
t(s)
t(s)
v' graph is a curve
i \\ v'  since the slope is changing, the velocity is not constant
E v" The graph lies below the x-axis and its slope is
e , the velocity of the objectis
(. Yina (. ) direction

Velocity — Time Graphs
Acceleration, and other useful information, can be determined using a velocity-time graph.

Velocity v. Time for a Snowboarder  Reading the graph:

Finding the slope:

v (m/s [S])

Area under the graph:




Example 2 Velocity v. Time for an

Consider the velocity-time graph shown. Determine the acceleration of 35 Acceleratin ject
the object and it’s displacement over the first 6.0 s of motion.
30
25
m) |
@ 20 /r
E 15 -
~ Y~
10 >
5
0
0 2.0 4.0 6.0
t(s)
Acceleration
Acceleration describes how quickly an object’s velocity changes over | The units of acceleration
time. This is seen as the slope of a velocity-time graph. are m/s”. This is best
thought of as:
Example 3

A hockey player takes 1.3 s to accelerate from a slow skate to a full sprint. If the player’s initial velocity is
2.65 m/s [N] and she can accelerate at 1.77 m/s*, determine her final velocity at a full sprint.




[ Activity 1

Hawk Diving

There are many situations where motion is non-uniform, really anytime
an object deviates from a straight line or changes speed. Because this
type of motion is so common, we need to be able to analyse and make
calculations from collected data.

The table below shows displacement versus time data for a hawk diving
downwards at constant acceleration to catch a mouse.

Time (s) 0.0 1.0 2.0 3.0 4.0 5.0 6.0
2 RS () 0.0 2.0 8.0 18.0 32.0 50.0 72.0
[down]
Instructions

1)

2)

3)

4)

Complete all work on graph paper.

Draw a proper displacement-time graph of the data. Be accurate. Place time on the
horizontal axis and displacement on the vertical axis. Connect the dots using a
“French Curve” — a tool designed to draw curved lines.

You know that we cannot find the slope of a curved line. Find the instantaneous

velocity of the hawk, using tangents to the curve, at 1.0, 2.0, 3.0, 4.0 and 5.0 s.

On a second piece of graph paper, place the velocities you just found onto a velocity-
time graph for the hawk. Place time on the horizontal axis and velocity on the vertical
axis. What do you notice about the points on this graph?
straight line of best fit.

Connect them using a

Calculate the slope of this line. Consider the units of the slope. What information

does the slope of a line on a U -t graph tell us about the motion?



Nelson Physics 11

Lesson 4 — Comparing Graphs of Linear Motion §1.4 Pg. 31 - 35

v' The area under an acceleration-time graph is the velocity of the object.
v" Given any of the three motion graphs, it is possible to construct the others using data

found in the original.

Acceleration — Time Graphs
When dealing with uniform (or constant) acceleration, these graphs will always be a

horizontal line. In high school kinematics, we only encounter situations involving uniform

acceleration.

Acceleration v. Time for a Lion

14 Reading the graph:
12
10
NE 8 Area under the graph:
L
E 6
T
4
2
0

Examining Relationships Between Graphs

Velocity-time Graph Acceleration-time Graph Motion Example

m) m)

£ £
= t(s) - t(s)
m) m)

£ £

= t(s) P t(s)

vV (m [E])
(m
@




Graphical Analysis with Linear Motion Graphs

It is important to be able to analyze and interpret the information found in different motion
graphs. Information can be found by reading the graph, finding the slope, or determining the
area of the graph. The graphic below illustrates the options available.

o im i
£ E £
1o A P M
t(s) t(s)
Example 1

Using the velocity-time graph shown below, construct the corresponding displacement-time graph.

v (m/s [E))

d (m [E))

t




. .. . Nelson Physics 11
Lesson 5 — Generating & Deriving Equations §1.5 Pg. 36 - 39

v' There are five key equations that describe motion involving uniform acceleration.
v' These equations can be derived from a general velocity-time graph and simply algebra.

When it comes to solving problems equations are extremely useful. Algebraic methods are
usually quicker and more convenient than graphing. There are 5 standard kinematics
equations and this lesson is dedicated to their derivation from the standard kinematics graphs.
Equations for Displacement and Acceleration

In our previous lessons, we have done most of the work to find the first two equations. Recall

that we can do a lot with a general velocity-time graph:

To generate the first equation, find the slope:

And rearrange to obtain a linear equation,

To generate the second equation, we determine the displacement from the area under the
curve:

Additional Motion Equations

The 3", 4™ and 5" equations come from these first two, but are expressed in different ways
(with different variables). We use the method of substitution to solve for the final three
equations.

Substitute the expression for ¢, in Equation 1 into Equation 2:



Similarly, rearrange Equation 1 for v, and then substitute this expression into Equation 2:

Finally, isolate At in Equation 1 and substitute into Equation 2:

And there you have it! These are the five fundamental
equations used in kinematics. Note that they are derived from

graphs containing constant acceleration; they are only v, =0, +alt
applicable in  problems that have wuniform  (constant)
acceleration. Ad =1V, +9)At @

Knowing the equations and where they come from is the first Ad = GAL+L1GAE O
part of the challenge, learning how to use the equations to
solve problems in the second part. Over the next few days we
will use these equations to solve tons of different kinematics 2

problems. -
1722 = 1712 +2aAd ®




Nelson Physics 11

Lesson 6 — Problem Solving §1.5 & §1.6
Pg. 36 — 43

v" A method (such as G.R.A.S.S.) can help make problem solving more efficient.

v' The symbol g is used to represent the acceleration due to gravity.

v" All objects in free fall near to Earth’s surface will accelerate at 9.8 m/s* in a direction
toward the centre of the Earth.

We have already solved a few simple problems as they relate to displacement, velocity and
acceleration. But with the addition of vectors, new equations and variables, questions can be
a little bit trickier.

Example 1
A skate boarder goes down a hill at 4.0 m/s and accelerates at 2.0 m/s’. What is their velocity 5.0 s later?

Example 2
A Tundra pick-up truck travels at 10 m/s [N]. It accelerates at 4.0 m/s” [N] for 8.0 s. What is the truck’s

displacement?

Example 3
A ball rolls up a hill at 4.0 m/s. 5.0 s later, it rolls down the hill at 6.0 m/s. What is it’s displacement after

5.0 s?




Example 4
A boy spits a watermelon seed down from a 40.0 m balcony at 2.0 m/s. Assuming no air resistance, how

fast is the seed going after 3.0 s? Acceleration due to gravity is 9.8 m/s”

Example 5
A physics student drops a penny (from rest) off of the roof of KCI. If there is no resistance from the air,

how far has the penny traveled after 2.5 s?

Example 6
A motorcycle travels at 45 m/s [W] through a school zone. How fast will it be going if the driver hits the

brakes and decelerates at 5 m/s* for 3.0 s?




[ Worksheet } Kinematics Problem Solving

Solve the following problems showing necessary steps. Remember that when you are working
with variables in two opposite directions; be sure to assign one of the directions as positive
and the other direction as negative. Also, if gravity is involved, remember that the
acceleration due to gravity is equal to 9.80 m/s’.

1. Graham threw a volleyball straight up with an initial speed of 21.0 m/s.
a) How high above the release point did it go?
b) How long did it take to reach its maximum height?
c) How long did it take to return to the release point?

2. Mackenzie was leaning over the edge of a cliff 32.0 m high. She threw a stone straight up
at a speed of 12.0 m/s. How long did it take for the stone to hit the ground?

3. A train is 120 m long. Sydney was standing 200 m from the front of the train when it
began to accelerate from rest. She noticed that the front of the train was moving at 8.00

m/s when it passed her. How fast would the back of the train be going when it passed
her?

4. Sofia was driving at 90.0 km/h when she saw the light turn yellow at an intersection
located 65.0 m ahead. She used 0.40 s to decide what to do, and then braked at —5.0 m/s”
until she stopped. What was her stopping distance? Did she stop before she reached the
intersection?

5. The barrel of a rifle is 72.0 ¢cm long. If it can fire a bullet at a speed of 360 m/s, what
would be the acceleration of the bullet?

6. Kelton kicked a rugby ball from ground level straight up at a speed of 22.0 m/s. How long
would it take for the ball to reach a height of 16.0 m?

7. Adam threw a baseball straight up at a speed of 24.0 m/s. How long would it take for the
ball to reach a height of 33.0 m?
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Lesson 7 — Vectors Using Scale Diagrams Nelson Physics 11
§2.1 Pg. 60 — 65

v" Objects can move in two dimensions, such as a horizontal plane and a vertical plane.
v' The compass can be used to express directions in the horizontal plane.
v' Displacement vectors can be added using a scale diagram.

Vectors are different than scalar values because they include:

Vectors are represented graphically as a directed line segment, that is to say, an arrow
pointing in the given direction.

To use vectors in problems we need to be able to manipulate them in a similar way to scalars.
We will ONLY concern ourselves with vector addition and subtraction for the purposes of this
course.

In addition to this, vectors can be manipulated primarily in two different ways: graphically
and algebraically. We will begin with the graphical manipulation of vectors and then examine
the algebraic manipulation of vectors next lesson.

Vector Problems

Example 1
Complete the following vector problems using your protractor and ruler.

Answer each problem by stating the resultant vector. All problems
should be answered to scale.




Example 1 (con’t)

Example 2
A student walks 7.5 m [N] and then 6.0 m

[W]. Draw a vector diagram and indicate the
student’s final displacement.

[ Worksheet } Vector Problems (Scale Diagrams)

For each of the following, draw a vector diagram and find the final displacement. Diagrams
must be to scale.

1) A dog runs 2.4 km [W] and then 4.6 km [S]

2) A flea jumps 7.0 mm [N] and then 2.5 mm [W]

3) A car drives 80 km [N] and then 40 km [S]

4) A leaf blows 4.5 m [W] and then 4.5 m [E]



Nelson Physics 11

Lesson 8 — Vectors & Algebra 22 P, 66 71

v" Perpendicular vectors can be added algebraically using trigonometry and Pythagorus.
v' The component method of vector addition will allow us to add any and all vectors.

Often it is more convenient (and less time consuming) to complete vector problems using an
algebraic method, simply because we don’t need to worry about completing scale diagrams if

we use algebra.

Recall that for any right-angle triangle, the following hold:

T'ri tric Rati
c Pythagorean Theorem rigonome rl(; avios
@ a+b'=c sing =2 cosf = — tanf =2
c c b
0

We will use the above information to solve vector problems from now on. The completion of
these types of questions can be a tedious task. If you observe the following general steps,
you’ll be completing complex vector problems in no time.

Step 1

Step 2

Step 3

Step 4

Example 1
Break the vector 5.0 cm [N 65° E] into two perpendicular component vectors.




Example 2
A prowling lion moves 12.0 m [W 30° S] and then 4.0 m [N]. Find the lion’s displacement.

[ Worksheet } Vector Problems (Algebra)
Draw a sketch and then use the algebraic method of vector addition to find the displacement for the
following.
a. A skittish squirrel darts 12.0 m [W] and then 7.0 m [S].
b. A nervous chicken takes the following route to avoid a KFC: 4.0 km [S], 1.0 km [E], 1.0 km
[N], 1.0 km [W], 1.0 km [S], 5.0 km [W].
c. A boat sails 4.5 km [S], then 6.0 km [NW] and finally 9.0 km [E 15° NJ.
d. Two boy scouts are competing in a team orienteering event. They follow instructions to go

50 m [N], 75 m [N 45° E] and then 100 m [S 30° EJ.

Alphonse and Beauregard enter into a car rally competition and travel 4.0 km [SE], 3.5 km
[E], 5.0 km [N] and 4.5 km [NW].

A bird flies 15 km [S 25° EJ, 20 km [W 30° S|, 45 km [E 5° N] and then 25 km [N 20° E].




1 : Nelson Physics 11
Lesson 9 — Relative Velocity lson Phsics |

v" We can use vector addition to add velocity vectors as well as displacement vectors.
v River-crossing and air-navigation problems are examples where we use relative velocity.

Relative Motion in One Dimension
Consider the three experiments below. We will use these in order to begin to describe the
idea of relative velocity.

In each of the cases above we have measured a different velocity depending on the situation.
What is common in each case is that the velocity is always measured relative to a reference
frame. Most of the time, in everyday life, we use the ground as a standard reference frame.

In order to distinguish between the different velocities involved in what we are doing, we
often use a series of subscripts:

<y
<y

v

og mg om

The relationship between the three quantities is

Example 1
A student swims in a river. When the current flows, its velocity is 1.0 m/s [E]. The student can swim at

2.0 m/s (in still water). Find the swimmer’s velocity with respect to the ground when:
a) there is no current flowing
b) The current is flowing and the swimmer swims with the current
¢) The current is flowing and the swimmer swims against the current.




Relative Motion in Two Dimensions

When dealing with relative motion and velocities in two dimensions, add the vectors in a
similar manner to the previous example. The method is very similar to adding vector
displacements. The difficult part is to determine what each velocity is measured with respect
to.

Example 2
If a student can swim at 2.0 m/s with respect to still water and there is a current of 1.0 m/s [E], find the

student’s speed with respect to the ground is he is seen to swim straight across the river.

Example 3
A pilot with a heading of [N30°E] and an airspeed of 400 km /h flies into a wind coming from the north at

110 kimm/h. What is the plane’s velocity with respect to the ground?




- . . . Nelson Physics 11
Lesson 10 — Projectile Motion $2.3 Pa. 76— 81

v' A projectile is any object that moves along a two-dimensional trajectory under the
influence of gravity only.

v" Projectile motion consists of independent horizontal and vertical motions. The horizontal
and vertical motions take the same amount of time.

v" Objects can be projected horizontally or at an angle to the horizontal. Projectile motion
can begin and end at the same or different heights.

v' The five kinematics equations can be used to solve projectile motion problems.

Parabolic Motion

When you throw a ball in outer space, the ball will leave your hand and travel in a straight
line forever. (Unless it runs into an object or encounters a gravitational field.) On Earth,
this does not happen. When we throw a ball on Earth, it travels not in a straight line but in
an arc.

The term projectile motion is used to describe events where an object travels along a two-
dimentional path and moves under the influence of gravity (it is not self powered).

If we analyze the motion more specifically, we make the following observations:

v v

And the trajectory of the ball is shown below:

~_

Notice that each horizontal component of the velocity is constant but that each vertical
component of velocity increases. This is because of the acceleration due to gravity.

The angle of launch also affects the path of a projectile,
specifically the range which is the displacement in the
horizontal direction, z.




Example 1
An arrow is shot from a height of 20.0 m above the ground with an initial horizontal velocity of 18.0 m/s.
How long will it take the arrow to reach the ground? How far will the arrow travel in the horizontal
direction?

The key to solving these two-dimensional problems is to break them up into two separate one-
dimensional parts, just like in the preceding example. In your final answer you can then
recombine the parts to give a two-dimensional solution. This means that you will handle z
and y components separately, each with their own set of givens, unknowns and equations.

Example 2
A soccer player on a level playing field kicks a ball with a velocity of 9.4 m/s at an angle of 40° above the
horizontal. Determine the soccer ball’s range and maximum height.




Example 3
A golf ball is hit with an initial velocity of 30 m/s, at an incline of 50°. It lands 2.0 m above the point of
impact and 70 m away. Find the final velocity of the golf ball, just before it hits the ground.

[ Worksheet } Projectile Motion Questions

1. A white-tailed deer can jump a fence with a maximum height of 2.4 m. If the deer jumps up at
an angle of 45°, what must be the deer's initial speed?

2. Nadia threw a rubber ball from a height of 1.24 m at a speed of 15.0 m/s and at an angle of 22°
below the horizon.
a. How far away from Nadia (in the horizontal direction) did the ball hit the ground?
b. How fast is the ball going when it hits the ground?
¢. At what angle to the horizon does it hit the ground?

3. Beaupre can throw a rugby ball with a speed of 28.0 m/s. Calculate the theoretical maximum
range of the rugby ball.

Answers:
1. 9.7m/s 2a) 2.64 m 2b) 15.8 m/s 2¢) 28° below  2d) 2.30 m 2e) 17.2 m 3. 80.0 m



